If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x+14x^2=0
a = 14; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·14·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*14}=\frac{-84}{28} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*14}=\frac{0}{28} =0 $
| (x-8)*(x*x)-7x-8))=(x*x*x)-(8x*8x) | | (25c^2)-16=0 | | (7x+8)(5x−6)=0 | | 48x^2+32x=0 | | -11+n+(-48)=25 | | -r+4=19 | | 13-3x^2=0 | | 2x+13+26+26+125+125=180 | | 200x^2+10x-20=0 | | 4(x+3)+2x=13 | | (4/t-3)+(2t/t-3)=(12/t^2-6t+9) | | 6x+60=-45 | | x^2+0.1x+10^4=0 | | 2y-3(2y-3)+3=31 | | 9x^2+34x−11=−3 | | 3(3x+4)5=9x+(-2) | | x*0.6=x-24.375 | | x*0.6=x-40 | | 1/3^x=243 | | 5+2x=-x+2 | | 4(2x+1)=5x+3x+ | | 1+3p=p+3 | | 1+3p=p=3 | | 1=3p=p= | | 4x+6/3=×+9/2 | | 1=3p=p=3 | | 2.4=4.6+0.2v | | 7(c-12=93 | | 5(c+4)=120 | | -29=(29-1)+2a | | -4(x-6)=48 | | 4^(2x-3)=2^3 |